You are using an outdated browser. Please
upgrade your browser to improve your experience.
Dirichlet Eta Function
Dirichlet Eta Function
The Dirichlet series is the alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta function, ζ(s) — and for this reason the Dirichlet eta function is also known as the alternating zeta function, also denoted ζ*(s). In Mathematics, The Dirchilet Eta function plays an important role in physics, complex analysis, and number theory and have been studied extensively for several centuries.For the Dirichlet Eta app, the data variables used to calculate the Dirichlet Eta Function are the Random Variable (x), the StepSizd Variable (h) and the Number of Steps. The Dirichlet Eta app display data for the Dirichlet Eta and Inverse Dirichlet Eta Values and displays two graphs.The graphs are touch enabled graph. Upon touching the graph a vertical line appears. Move the vertical line to the left or right to display the point (x) and the Dirichlet ETA and Inverse Dirichlet ETA data pairs.The horizontal x-axis displays x values. The vertical y-axis plots a range of either the Ƞ(x) or 1-Ƞ(x) valuesHorizontal Max and Min dashed lines display the Maximum and Minimum values
Features